中子星内部结构

高 勇

(北京大学 100871)

1. 中子星物态之谜

中子星是大质量恒星死亡后形成的致密残 骸[®]。典型的中子星质量约为1.4*M*。⁽¹⁾,但半径仅有 10 km左右。在如此局促的空间里,中子星内部的 核物质都被挤在一块,形成平均密度超过饱和核物 质密度⁽²⁾的超核物质,内部一颗方糖大小的物质就 和全人类的总质量相当。致密的环境同样造就了 强大的引力场,中子星内部和邻域的时空是高度弯 曲的,表面重力加速度是地球表面的10¹¹倍,逃逸速 度可达约0.5倍的光速。围绕中子星高密度和强引 力场的特点,我们可以提出两个问题:一是构成中 子星内部超核物质的基本单元到底是什么?二是 这些基本单元通过怎样的相互作用来让中子星抵 抗极强的引力场而不塌缩为黑洞?

我们不妨站在一个更广的角度看这两个问题。 "星体"是自身引力被内部压强平衡而形成的稳定 结构。引力提供向内的力让星体收缩,在经典的引 力理论中,它无法被屏蔽,具有普遍性和长程性,而 试图让星体膨胀的压强却是多样的,取决于星体内部 微观粒子的构成和非引力的相互作用。正是压强 的多样性才造就了行星、恒星、白矮星和中子星等 不同类型的星体。压强随着物质的密度、温度、成 分等变化的关系叫做物态方程,而物态决定星体结 构。所以,前文的两个问题其实就是在问中子星内部 超核物质的物态是什么?这个问题至今没有明确 的答案,是当今物理学和天文学研究的一大挑战。

2. 从常规物质到核物质

既然宏观的星体结构是由微观的物质及其相

互作用决定的,我们就首先从微观粒子世界说起。 粒子物理标准模型包含6类夸克、6类轻子、4类传 递相互作用的规范粒子和1个希格斯粒子。这些基 本"砖块"堆砌起了我们这个纷繁的物质世界。夸 克通过强相互作用"粘合"为强子。质子和中子就 是强子,尺度约为1 fm,是构成原子核的基本单 元。原子核和电子通过电磁相互作用形成原子,尺 度约为0.1 nm,比原子核大5个量级。原子和核子 的尺度差异主要是因为电磁相互作用比强相互作 用弱得多。为了和强相互作用主导的核物质对应, 在这里我们把电磁相互作用主导的物质叫做常规 物质。

物态由微观粒子及其相互作用决定。小质量 行星主要由内部离子间的库伦排斥支撑,恒星内部 的压强主要来自高温等离子体的热压。白矮星是 小质量恒星死亡后的残骸,它的内部没有热核聚 变、温度较低,热压不可能抵抗强大的引力,而库伦 排斥又太小,更不可能支撑星体。富勒于1926年指 出支撑白矮星的压强源于电子简并压[®]。典型的白 矮星和地球差不多大,质量在太阳质量的量级。相 较于普通的恒星,白矮星内部的电子运动区域被压 缩了100万倍,量子简并效应导致电子的费米能很 高,电子平均运动速度很快。这种量子效应带来的 压强就是简并压。1930年,20岁的钱德拉塞卡细致 计算了电子简并压支撑的白矮星结构。他发现质 量大于约1.4 *M*。的白矮星不再能支撑强大的引力, 这就是著名的"钱德拉塞卡极限"[®]。

行星、恒星、白矮星等星体虽然结构各异,但它们 的物态本质上都是由电磁相互作用主导的常规物 质决定的。而我们的主角中子星,物态由强相互作

图1 各类星体的质量*M*和半径*R*之间的关系,不同颜色的散点分别代表太阳系行星、系外行星[®]、褐矮星[®]、白矮星[®]和主序恒星[®]的天文观测数据,省去了质量和半径的测量误差。类地行星随着质量增大,密度基本不变,*R*∝*M*¹³。类木行星内部电子简并压开始扮演重要作用。从大质量行星到褐矮星,随着质量增大半径变化不大,这是电子简并压和库伦排斥共同作用的结果。主序恒星随着质量增大半径逐渐增大。 红色的曲线大致描绘了各类星体的质量半径关系[®]。白矮星由电子简并压主导,低质量时满足*R*∝*M*⁻¹³,随着质量增大达到钱德拉塞卡极限。中子星主要由强相互作用主导的超核物质构成,其质量半径关系将在后面的小节介绍

用主导的核物质主导。上世纪30年代初,在研究星 体塌缩与恒星能源的背景下,朗道曾思考这样一个 问题:当星体的引力太强而不可避免地收缩以致原 子核逐渐靠近并挤在一起时会发生什么? 朗道意 识到该过程中电子费米能变得很高。他大胆猜想, 为了保持星体稳定,质子和电子会"紧密"结合成一种 中性粒子。他形象地称这种星体为"巨原子核"^⑨。

1932年,朗道发表了他的理论。虽然他的中性 粒子的概念在物理上是错误的,但他大胆提出了核 物质密度的星体。同年,查德威克宣布发现了中 子。朗道的想法逐渐演变为各种不同的中子星模 型。1934年,巴德和兹威基指出超新星爆发之后可 能残留中子星。1939年,奥本海默和沃尔科夫利用 广义相对论详细计算了中子球的结构。1967年,贝 尔发现第一颗射电脉冲星,人们很快就意识到它就 是中子星。自此,关于中子星内部结构的研究步入 了一个全新的时代。

3. 中子星物态模型

中子星内部到底有哪些粒子,它们之间的相互 作用是怎样的?一个简化的观念当是大质量恒星 塌缩后,其电子费米能变得很高。但由于星体引力 场很强,电子简并压并不能支撑星体。高能电子会 和质子通过逆β衰变⁽³⁾生成大量中子,体系能量降低 并达到稳定,星体由中子简并压和核力支撑。由于 星体主要由中子构成,所以叫做中子星。

然而,简单认为中子星主要由中子构成的看法 是值得仔细推敲的。中子星模型是在20世纪30年 代被提出的,那时中子和质子被认为是基本粒子。 后来人们对物质世界的认识越来越深入,发现它们 其实是由更基本的夸克构成的。20世纪60年代, 强子结构的夸克模型逐渐被建立起来,对中子星内 部结构的认识逐渐有了不同的声音。人们开始怀 疑中子星内部可能主要由其他一些奇特的强子甚

图2 中子星内部结构的不同模型示意图,包括强子星、混合/混杂星、夸克星和奇子星(图片改编自 physicsworld.com)

至夸克构成。由于"中子星"这一名称已经在人类的认知中先入为主了,所以在不详细讨论中子星内部结构时,"中子星"这一名称泛指大质量恒星死亡后形成的脉冲星类致密天体[®]。

虽然描述强相互作用的量子色动力学(QCD)已 经被建立,但在中子星内部几倍饱和核物质密度的 能标下,相互作用是非微扰的。人们还不能从QCD 第一性原理计算出中子星内部的结构,这是中子星 物态之谜的关键。学者们从不同角度出发,给出了 多种中子星结构模型,如图2所示。

强子星(hadron star)内部由强子构成,无自由夸 克。传统的中子星(由大量中子和少量电子、质子 等构成的星体)就是强子星中的一种。强子星大致 可分为壳层和核心两个成分。壳层厚约1km,占星 体质量的10%以下,包含丰中子的原子核,少量自 由质子、电子和大量中子。密度超过饱和核物质密 度的区域是中子星的核心,占中子星总质量的90% 以上。核心的外部主要包括自由中子和少量的电 子和质子。在接近中心的内核区域,密度超过了2~ 3倍的核物质密度,可能会出现各种奇特的强子物 质,如介子和超子。

混合/混杂星(hybrid/mixed star)拥有和强子星 一致的壳层,只是这两类模型认为内核会出现解禁 的自由夸克。混合星模型认为内核存在一阶相变, 强子相和夸克相之间有密度不连续的间断面分 开。混杂星模型认为内核区存在夸克态和强子态 共存的区域。

1984年,威腾提出一个猜想:基本等量的上(u)、

下(*d*)、奇异(*s*)夸克构成的夸克物质比⁵⁶Fe还要稳 定,是强相互作用真正的基态^①。如果这一猜想成 立,那传统的中子星模型就被推翻了,人们原先所 认为的中子星其实是由基本等量的上(*u*)、下(*d*)、奇 异(*s*)夸克构成的夸克星(quark star)。由于这种模型 含有奇异夸克,所以又被称为"奇异星"或者"奇异 夸克星"。不同于中子星,夸克星表面密度在饱和 核物质密度的量级。

夸克星中夸克是自由的,或者相互作用是用微 扰的方式加入的。然而在星体内部几倍核物质密 度下,强相互作用很可能仍旧是非微扰的。一种推 广的夸克星模型认为构成星体的单元不是自由夸 克,而是类似于强子的、内部含有奇异夸克的"夸克 集团",称为奇子(strangeon)[®]。由奇子构成的星体 叫做奇子星(strangeon star)。奇子星和强子星相似 的是内部没有游离的夸克,而和夸克星相似的是星 体表面密度不为零,一般高于饱和核物质密度。

4. 中子星的质量半径关系

前文提到的不同种类的模型,甚至在同一种类 的模型中运用不同的相互作用理论,都会给出不同 的物态。一般来说,在给定密度的情况下,若压强 越大,则物质越难被压缩,称物态较"硬",反之,物 质更容易被压缩,称物态较"软"。如图1所示,不同 的物态对应不同的质量半径关系。不同于其他类 型的星体,中子星的引力场很强,必须使用广义相 对论。将广义相对论中的流体静力学平衡方程和 物态方程相结合,可以计算出给定星体中心密度时 的质量和半径。在图3中我们展示了强子星、混合 星、奇异星以及奇子星等模型的质量半径关系。

对于确定的物态,随着给定的中心密度不断增 大,星体的质量不断增大,直到质量达到最高点。 此时若进一步增大中心密度,星体内部的压强无法 再支撑引力,星体会变得不稳定而塌缩。这一点对 应的质量就是中子星的极限质量。粗略来看,强子 星、混合星或者混合星半径随着质量增大而减小。 夸克星和奇子星半径随着质量增大而增大,直到星 体质量接近极限质量时,引力场过强,导致质量-半 径曲线"打弯"。

一般来说,物态越硬,极限质量就会越大。目前观测到最大质量的中子星质量约为2M_☉。对于 内部含有超子的强子星和夸克星,一般来说物态偏 软,极限质量较低。这是因为s夸克带来了新的自 由度,一般会使得体系能量降低。在奇子星模型 中,奇子是非相对论的,在密度非常高时存在很强 的排斥相互作用,物态非常硬,所以它的极限质量 可以远高于2*M*_o。很多强子星模型的极限质量也 可高于2*M*_o。同一类型的中子星模型,在给定质量 的情况下,物态越硬的中子星半径一般也越大。

5. 利用观测限制中子星物态

利用观测限制中子星物态是天文学中的重大 问题。中子星在各个窗口的观测有望限制中子星 物态方程,甚至解开这一谜题。下文将简单介绍几 种限制中子星物态的观测手段。

5.1 射电脉冲星计时:寻找大质量中子星

不同的物态预言了不同的极限质量。如果某 种物态对应的极限质量低于观测到的脉冲星质量, 那么这种物态就被排除了,因此寻找更大质量的中 子星是人们检验物态的绝佳探针。测量质量有多 种方式,其中脉冲双星动力学能给出较为"干净"的 测量。

射电脉冲星是非常精确的时钟³³,脉冲束像灯

图3 不同物态模型对应的质量半径关系。右下方的阴影是由目前已知的自转最快的中子星 (自转频率为716 Hz)排除的区域,右上方阴影区为黑洞,中间黄色和粉色的带是目前观测到的质量最大的中子星。

塔一样规律地扫过我们。想象一颗孤立的毫秒脉冲星相对我们静止,我们会看到基本等周期的脉冲信号。若脉冲星处在双星系统中,这个运动的时钟就包含着双星轨道和周围弯曲的引力场的信息,脉冲到达时间也会受到相应的调制。若脉冲星的伴星是白矮星,射电脉冲星的脉冲信号经过伴星附近弯曲的时空时会有时间延迟,叫做夏皮罗时间延迟(Shapiro time delay)。这个效应会打破轨道参数的某些简并性,从而独立地给出脉冲星的质量。在68%的置信区间内,PSR J1614-2230的质量为1.97^{+0.04} M_{\odot} ⁶⁹,而 PSR J0740+6620的质量达到了2.08^{+0.07} M_{\odot} ⁶⁹。这些测量排除了部分核心含有超子的中子星模型和一些夸克星模型。奇子星和许多内部不含有超子的强子星模型通过了这一检验。

中子星的极限质量到底是多大?我们目前仍 旧没有答案。自然总会不断给我们惊喜,未来更多 的射电观测或许能够找到质量更大的脉冲星!

5.2 中子星表面的X射线热斑辐射:测 量半径

相比于质量,半径就难测多了。试想,要知道银 河系尺度中一个尺寸只有几十公里的星体的具体 半径是多么不容易的一件事情!但天文学家还是找 到了方法:一些脉冲星有来自表面的热的X射线辐 射^{®®},携带着中子星自转和表面的强引力场的信息。

图4 射电信号经过白矮星伴星的艺术构想图。脉冲信号在经过 伴星的引力场时被延迟。图片来源:Bill Saxton

如图4所示,光子在逃离中子星强大的引力场 的时候会弯曲。一方面观测者看到的中子星"视半 径"会大一些;另一方面光线偏折导致在某些位形 下,即使热斑转动到了星体的背面,观测者仍旧能 看到辐射。当星体转得足够快的时候,多普勒效应 会导致热斑还没到达离观测者最近的相位时就被 看到。强引力场导致的光线偏折和转动带来的多 普勒效应都和星体的质量和半径相关。对X射线 热斑辐射的观测和细致的理论建模相结合,人们就 可以获得质量和半径的信息。

X射线的观测一般不能独立给出质量和半径, 而是给出组合参数——致密度(质量比半径)。如果 质量能够通过动力学的方式给出,那么就能直接测 量半径。结合 NEWTON(牛顿望远镜)的数据,X射 线卫星 NICER(中子星内部组成探测器)测量了大质 量脉冲星 PSR J0740+6620的X射线辐射。质量是 通过脉冲星计时测量的,精度很高。科学家通过对 这颗脉冲星X射线建模给出的半径为12.39^{+1.30} km (68%的置信区间)³⁰⁹。

未来有望给出更多脉冲星的致密度和半径的 限制。值得注意的是X射线热辐射的建模有一定 的复杂性,需要考虑如热斑温度的分布、磁场位形 和强度、磁层的非热辐射、脉冲星的距离等因素的 影响³⁰。今后的研究中,更加细致的理论建模是必 要的。

5.3 双中子星旋近引力波:测量潮汐形 变参数

2015年,LIGO/Virgo合作组探测到第一例双黑 洞并合事件GW150914[®],标志着人类迈入了引力波 天文学的时代。随后在2017年又探测到了第一例 双中子星旋近的引力波GW170817和各个波段的 电磁辐射,宣告了多信使天文学时代的到来[®]。双 中子星演化的最后阶段可以分为旋近、并合和铃宕 三个阶段。两颗旋近的中子星由于不断辐射引力 波而相互靠近,最终并合。此后,剧烈的碰撞产生 引力波、多个波段的电磁辐射和大量中微子,最终

图5 快转中子星表面热斑辐射的示意图,模型参数取中子星质量1.4 M_☉,半径12 km,热斑的角半径为28.6度,纬度为45度。四张子图 分别代表四个转动相位的X热斑辐射。亮度-时间曲线中的黄点标记热斑在图中的位置。在弱引力情形中,热斑会在某些相位被挡住; 在强引力场情形中,当考虑了相对论效应,该位形下的热斑在所有相位都是可见的。这是由于光线传播过程中发生偏折,这也导致 中子星的"视半径"相对弱引力情形要大一些。对于转动足够快的中子星,还应考虑多普勒效应。这导致热斑还没到达 离观测者最近的相位时就被看到了(图片来源:Morsink/Moir/Arzoumanian/NASA)

宁静下来。

不同于双黑洞,中子星是有延展的物质。在双 中子星旋近的末期,星体本身的大小不能忽略。如 图6所示,双中子星在各自的潮汐场中发生形变,这 类似于地球在月球的潮汐力作用下会发生涨潮。 一方面,星体产生潮汐形变吸收了双星轨道的一部 分能量。另一方面,形变的中子星质量分布发生了 变化,而形变的部分会贡献引力波辐射。因此,潮

图6 孤立的静态中子星(左)和处于伴星潮汐场中形变的中子星 (右),其中R表示中子星半径,d表示中子星和伴星的距离。伴星的 潮汐场会导致中子星发生形变,Q₀表示形变产生的质量四极矩。 若系统是双中子星系统,则两个中子星各自处在对方的潮汐场中 并发生形变。图片来自文献容。

汐形变的双中子星引力波辐射要比同等质量的点 质量粒子引力波辐射快,这一物理效应可以从旋近 的引力波信号中提取³²⁹。

中子星在潮汐场中形变的程度可以用一个叫 做潮汐形变能力的物理量来衡量。潮汐形变能力 越强,星体越容易发生形变。从牛顿力学的观点 看,潮汐力是引力场的梯度。对于给定质量的星 体,半径越大一般潮汐形变能力也越强。实际上, 潮汐形变参数正比于半径的5次方,对半径的变化 非常敏感,所以潮汐形变能力是一个很好的限制物 态的物理量。GW170817虽然没有测量到潮汐形 变,但是给出了潮汐形变能力的上限²⁰。

强子星和混合星是引力束缚的系统,一般在质 量变大的过程中星体变得越来越致密(见图3),也就 越来越难以形变,所以潮汐形变随着质量逐渐减 小。另一方面,物态较硬的星体半径更大,星体更 容易发生形变,潮汐形变能力也就越强。 GW170817给出的潮汐形变能力的限制排除了一部 分过硬的强子星物态。夸克星和奇子星是强力自 束缚的系统,一般也更致密(图3),潮汐形变参数也 较小,通过了引力波的检验。

值得注意的是,模型还需满足极限质量大于 2M_o的限制。对于强子星,物态较硬时极限质量才 会大于2M_o,而潮汐形变能力的限制要求物态不能 过硬,所以GW170817将强子星模型的参数限制在 了一个较窄的范围。夸克星虽然通过了潮汐形变 能力的检验,但是大部分模型的极限质量勉强能够 达到2M_o。奇子星能够同时满足潮汐形变和极限 质量的限制。当然,到底哪种模型是中子星的本质 还有待更多的观测数据。我们期待未来能够观测 到更多的双中子星并合的引力波事件。

6. 结语

距发现第一颗脉冲星已经过去了50多年,人类 已观测到了几千颗脉冲星,在电磁波的不同波段获 得了丰富的观测数据。未来,包括射电、X射线等 窗口的观测将会带给我们更多中子星内部结构的 信息。射电方面,我国的五百米单口径射电望远镜 FAST将在寻找大质量中子星和相对论性脉冲双星 方面发挥重要的作用。X射线方面,NICER以及下 一代的X射线望远镜,如我国主导的增强型X射线 时变与偏振空间天文台(eXTP),将会得到更多观测 数据,对中子星致密度和半径的测量也会更精确。 不仅如此,X射线能谱和偏振的观测还蕴含了中子 星表面和强磁场的信息[®],对限制中子星物态也具 有深远的意义。

第一例双中子星并合事件为研究中子星物态 提供了新的机遇。旋近阶段引力波对中子星的潮 汐形变能力给出了限制,排除了一些物态模型。由 于目前的引力波探测器灵敏度有限,人们未能探测 到双中子星并合后的引力波信号,而并合之后约 2.7 *M*。的星体是中子星还是黑洞也仍有争论。今 后,随着更多双中子星并合事件的发现和第三代地 基引力波探测器如Einstein Telescope(爱因斯坦望远镜)或Cosmic Explorer(宇宙探索者)的建成,有望精确测量潮汐形变和探测从旋近到并合后的引力波信号。

对中子星内部结构的探索,关系到我们对基本 强相互作用和引力相互作用的理解。未来,结合不 同观测窗口给出的信息,人类有望彻底解开中子星 物态之谜!

参考文献

- ① 王维扬,2022,现代物理知识
- (2) Fowler R. H., 1926, MNRAS, 87, 2
- ③ Chandrasekhar S.,1931, ApJ, 74, 81
- ④ Jingjing Chen, Kipping D. 2017, ApJ, 834, 17
- (5) Carmichael T. W. et al., 2020, ApJ, 160, 53
- 6 Caiazzo I. et al., 2021, Nature, 595, 39
- ⑦ Torres G., Andersen J., Giménez, A., 2009, AAR, 18, 67
- (8) Garani R., Palomares-Ruiz S., 2021, arXiv: 2104.12757
- (9) Landau, L., 1938, Nature, 141,333
- ⑩ 来小禹,徐仁新,2019,物理,48,554
- ⁽¹⁾ Witten E., 1984, PhRvD, 30, 272
- 12 R.-X. Xu, 2003, ApJL, 596, L59
- ⑧ 卢吉光,2022,现代物理知识
- (1) Demorest P. et al., 2010, Nature, 467, 1081
- (b) Fonseca E., et al., 2021, ApJL, 915, L12
- 16 全号,2022,现代物理知识
- ① 葛明玉,2022,现代物理知识
- (B) Miller M. C., et al., 2021, ApJL, 918, L28
- (1) Riley T. E., et al., 2021, ApJL, 918, L27
- 20 Ozel F., Freire P., 2016, ARAA, 54, 401
- 2 Abbott B. P. et al., 2015, PhRvL, 116, 061102
- 2 Abbott B. P., et al., 2017, PhRvL, 119, 161101
- 23 Hinderer T., 2008, ApJ, 677, 1216
- 2 Flanagan E. E., Hinderer T., 2008, PhRvD, 77, 021502
- D Chaves A. G., Hinderer T., 2019, J. Phys. G, 46, 123002

⁽¹⁾ 太阳的质量和半径分别表示为M。和R。

⁽²⁾ 由核子构成的物质能量最低时的密度,约为 2.7×10¹⁴ g cm⁻³